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summary 

A method to measure excited state extinction coefficients and quantum 
yields of formation and to calibrate laser intensity, based on the partial 
saturation of, for example, transient absorbance, is analyzed. Previous dis- 
cussion of this method has been based on a two-state model of the excitation 
process. For cases such as excited triplet-triplet absorption, the participation 
of a third state, the first excited singlet, can disrupt this simple picture. In 
the current work we develop a three-state model of the excitation-deactiva- 
tion process which satisfactorily incorporates the effect of the intermediate 
level. Complications such as spatial inhomogeneity of the exciting pulse and 
hence of transient concentration are not dealt with and samples are assumed 
to be optically thin. From the more general model it can be seen that inter- 
pretation of the partial saturation method based on the two-state model will 
work properly only under restrictive conditions of relatively short singlet 
lifetime Ts -4 Iz,,-l (the inverse of the excitation rate) and relatively long 
pulse lengths rp s ki,,-’ (the inverse of the intersystem crossing rate). 
Numerical simulations are performed on some typical systems to illustrate 
the limits of the methods. These simulations also indicate that even when 
it appears the method is working well, i.e. the saturation curve is well 
described, the derived parameters may not be related to the underlying 
photophysical properties of the system. 

1. Introduction 

Recently it has become popular to use a two-state model to describe 
the excitation process in photochemical and photophysical measurements 
involving saturation of transitions due to high intensity lasers [ 1 - 51. More 
complicated kinetic mechanisms have been used in discussions [6 - 91 of 
the various multiphotonic processes that are often a complication in satura- 
tion regions. However, the two-state model of excitation seems to be the 
description of choice when these higher order processes are not likely to be 
a problem, such as in the lower intensity partial saturation regions. 
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The two-state model of excitation is easy to derive. The model can be 
expressed by the kinetic equations 

d[ ‘Ml - = -@+k,,[‘M] 
dt 

and 

dr3M*J 

dt 
= +G+.k,, [‘Ml 

where [‘M] and [ 3M* ] are the ground state concentration and the transient 
concentration respectively and @T is the transient yield. The excitation rate 
constant k,, is defined by [lo] 

k ex = 2303e&(x, t) (3) 

where eo (1 mol-i cm-‘) is the extinction coefficient of the ground state at 
the exciting laser frequency and &,(x, t) is the intensity of the exciting laser 
as a function of distance into the cell and as a function of time. The units of 
IP are einsteins per square centimeter per second. In this communication 
we shall ignore the x dependence of IP and treat optically thin samples. It 
should also be noted that spatial homogeneity of the exciting flash is 
assumed throughout. We defer consideration of such complications and 
focus instead on the deficiencies of the underlying experimental idealization. 

For a square excitation pulse, eqns. (1) and (2) can be solved for 13M*], 
with the initial conditions [ iM] = cc and [3M*] = 0 to give 

[3M*] = co{1 - exp(-2303eGIp@Tt)} (4) 

for the concentration of transient at any time t up to the end of the constant 
pulse. Substitution of eqn. (4) into the expression for optical density change 

AOD = (eT* - eG)[‘M*]Z (5) 

gives 

AOD = a(1 - exp(-& )I (6) 

with 

(7) 

and 

b = 2303eGt@= (3) 

In these equations eT* is the extinction coefficient of the transient, which is 
monitored along a path length 1. 

These equations have been used to obtain the extinction coefficient and 
the transient yields [ 1,3] from the a and b defined by eqns. (7) and (8). The 
values for a and b are obtained by fitting the curve of AOD uersus 1, to the 
functional form given in eqn. (6). In order to obtain both a and b, the partial 
saturation curve must contain non-linear regions; otherwise only the product 
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of a and b can be obtained from eqn. (6). However, the non-linear regions 
can fall far short of the total saturation region. Herein lies the great 
advantage of the method in that it can be used with low laser powers relative 
to the total depletion method. (For a review of extinction coefficient 
methods and a compilation of +* values for triplet states see ref. 11.) 

In a related measurement, the above equations have been suggested as a 
convenient way to measure intensities of lasers [2]. To do this the above 
method is worked in reverse. If both the quantum yield and the extinction 
coefficient, together with the fraction of ground state converted to transient, 
are known then eqn. (4) can be used to obtain the intensity delivered to the 
cell during a square pulse of width rD by taking t = ra and solving eqn. (4) 

It is obviously appropriate to base the partial saturation methods on a 
two-state model whenever the process can be described solely in terms of 
two states. Conceptually, however, the problem with these methods comes 
when they are applied to cases where the state being pumped is not the same 
as the state being observed. Such is the case when the transient is a triplet 
state formed by intersystem crossing from, for example, the first excited 
singlet state of an organic molecule in solution. The factor & superficially 
takes care of this, but the intermediate state does not appear in the kinetic 
equations. The question naturally arises as to when this intermediate state 
can be so ignored. 

In this paper we address this question by first generalizing the excita- 
tion model to a three-state model, which can be solved exactly, and then 
analyzing the general conditions under which the equations of the two-state 
model can be obtained. Secondly we use a differential equation package to 
solve the three-state model numerically and then test these numerical solu- 
tions with the functional form of the two-state model. It will be seen that 
the conditions for the three-state model to collapse into the two-state model 
are somewhat restrictive and can lead to substantial errors in the parameters 
obtained from fitting data to eqns. (4) and (6). 

2. An alternative model for photoexcitation 

In order to see under what conditions the state being pumped can be 
ignored in a kinetic model of excitation, we introduce a more complete 
model for the excitation process than the two-state kinetic model in eqns. 
(1) and (2). S ince we are questioning the application of the two-state model 
to methods involving triplet states, we adopt the appropriate notation and 
the following three-state kinetic model: 

7 = (kf + ki,)[lM*] -kk,,[‘M] (9) 

d[ lM*-J 

dt 
= k&M] -k,[‘M*] (10) 
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and 

d[ 3M*] 

dt 
= kisJ’M*] (11) 

In these equations kf, ki, and kisc are the rate constants for fluorescence, 
internal conversion and intersystem crossing respectively from ‘M*, the 
pumped state in this model. The other rate constant is defined as 

ks = kf + ki, + kisc (12) 

In this photophysical model, the triplet is not allowed to decay on the time 
scale under consideration, in analogy with the two-state model in Section 1. 

The equations can be solved exactly. We choose to focus on the 
solution for all times t less than or equal to the pulse length rP of a square 
excitation pulse. For the initial conditions [‘Ml = cG and [ ‘M* ] = 0 = [ 3M*] 
the solutions for t < rP are [lo] 

[lM] = Z 
(X2 - kiss) ew(-WI + (his, - h3) exp(-~3t) 

A2 A3 t 

[‘M*] = Z:(-exp(--‘hz t) + exp(-A3t)) 

and 

[3M*] = kiscE exp;-A2t) - 
exrN--X3 t) 

2 

x 

3 

b-h3 

+ X2h3 t 

The definitions of the symbols used in eqns. (13) - (15) are 

z= kexcG 

A2 - x3 

X+Y 
x2 = - 

2 

X-Y 
x3 = 

2 

where 

X = he, + kf + ki, + kisc 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

= k ex +ks 119) 

and 

Y = (X2 - 4kigckex)1’2 (20) 

At this point it can be observed that the approach to saturation does not 
depend on the optical density [l] or the concentration of the ground 
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state. The initial concentration c o appears only in the factor Z which is 
a simple multiplicative factor in time-dependent concentrations of all three 
species (eqns. (13) - (15)). 

To relate this solution of the three-state model to the two-state model, 
eqn. (15) can be rearranged as 

It is then useful to rewrite Y as 

4kisckex l/2 

X2 (22) 

showing, from eqns. (17) and (18), that X2 will be larger than X3 if the 
parameter 

kisckex 
y= x2 

is small. Under these conditions the term exp(--X2t) in eqn. (21) will be 
smaller in magnitude than the term exp(-Ast) for two reasons. Firstly, since 
x2 > X3, the exponential itself will be smaller, and secondly the factor multi- 
plying exp(-X,t) will be smaller because of the relative magnitudes of the 
values of h2 and hJ. Equation (21) then becomes 

i3M*3 x2 =Pe--X3 t) 

x2 --3 
(24) 

Again if h3 is ignored relative to X2 in the factor multiplying exp(--A3t) 

i3M*1 = cG(f - exp(--h3rp)} (25) 

where we have specialized to t = rP, the end of the pulse. To simplify eqn. 
(25) further, the approximation that y (from eqn. (23)) is small can be used 
on X3 itself giving 

x3= 
kexkisc 

kex +ks 

If the further approximation that 

k, 4 ks 

(26) 

(27) 

holds, then 

x 
kexkisc 

3" 
ks 

= kex% (28) 
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and eqn. (25) finally reduces to 

f3M* J = c~(l - exp(-/z,,@Jp)) (29) 

Since k,, is proportional to Ip by eqn. (3), eqn. (29) is equivalent to eqn. 
(6), which is the working equation of the two-state model. It is precisely 
equal to eqn. (4) of the two-state model for t = rp. 

Thus in order for the three-state model to collapse into the two-state 
model, eqn. (27) must hold. Physically this condition means that the decay 
of ‘M* is very fast compared with the rate of loss of population in the other 
two states, and thus the model can act as though the excited singlet state 
does not exist. 

That the condition in eqn. (27) is truly a hindrance to using the partial 
saturation method can be seen by considering two cases from the literature 
where non-linear behavior was observed. In one experiment [ 21 non-linear 
behavior was seen with pulses of 1.2 X lo@ einstein cmp2, and in the second 
experiment [6] with power densities of 0.2 MW cmp2. For the pulses used, 
these two values translate into k,, = 1.4 X 10’ s-l and k,, = 6.7 X 10’ s-l 
respectively using 5000 1 mol-l cm- ’ for eo in eqn. (3). Since fluorescence 
lifetimes are of the order of 10 ns {k, = 10’ s-l) condition (27) is not well 
satisfied. 

It turns out that there is another condition other than k,, -@ ks that 
must be satisfied in order for the standard partial saturation method (eqns. 
(6) - (8)) to give reliable extinction coefficients and yields of triplet states. 
The condition in question concerns the necessity of being in non-linear 
regions of the AOD uersus Ip curve mentioned in Section 1. From eqn. (29) 
it can be seen that this condition can be expressed as 

k,,@,Q, X 1 (30) 

For values smaller in magnitude, the exponential in eqn. (29) can be 
expanded in a power series with the result that the constant term cancels 
with the “I” already present in the expression, and the leading term in 
eqn. (29) is then proportional to k,, (or Ip,), frustrating attempts to deter- 
mine a and b separately. 

The restriction in eqn. (30) puts a severe limitation on the applicability 
of the partial saturation method when coupled with the condition in eqn. 
(27). The two conditions can be combined to give 

kiscrp 9 1 (31) 

Since usually k&, G lo8 s-i for most systems, using pulsed lasers it will be im- 
possible to find non-linear regions in the AOD versus I, curve where the two- 
state model (eqns. (6) - (8)) will give correct extinction coefficients and 
quantum yields. Only by going to very long laser pulses or conventional flash 
photolysis equipment will the method have much chance of giving correct 
results. (See Appendix A for another derivation of the restrictions imposed 
on the two-state model in the partial saturation region.) 
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3. Numerical solution of the model 

Section 2 shows that the standard equations (eqns. (6) - (8)) are likely 
to fail under many common conditions when used to measure triplet extinc- 
tion coefficients and quantum yields. There is little information about what 
constitutes “much less than” in condition (27), and so it is not clear whether 
the model will work or not when the conditions are such as the actual 
experimental conditions mentioned earlier when k,, was “less than” ks, but 
not really “mu.ch less than”. Rather than use the analytical solution of Sec- 
tion 2 to test the conditions further, we decided to study the solutions using 
a numerical solution to the three-state model. This was done for two reasons. 
First, the analytical solutions become somewhat cumbersome to work with, 
especially when they are extended beyond the excitation pulse. Second, the 
numerical solution can be done with a variety of pulse shapes. 

The central numerical routine used was a standard software package for 
solving differential equations. It is called the Livermore Solver for Ordinary 
Differential Equations (LSODE) [ 12]. The version of LSODE used was that 
of August 13, 1981. Our main program calls LSODE as a subroutine and does 
all the input-output and other assorted bookkeeping. For example, there 
are options in the program to step over time or intensity, plots can be made 
on a Digital VT100 Retro-Graphics terminal or on a Versatec electrostatic 
plotter, options are available to use square, gaussian or triangular pulses 
and a call can be made to a routine which fits the output of LSODE to an 
exponential growth. The fitting subroutine [ 131 is a non-linear least-squares 
program with an iteration procedure described by Pitha and Jones [ 14 3 and 
a weighting scheme described by Wentworth [ 15,161. 

4. Results of the numerical solution 

To illustrate some of the problems with the partial saturation method 
of measuring quantum yields and extinction coefficients, we solved the 
three-state model numerically for several typical situations. We did not 
need to introduce an cT* to test the equations of the two-state model. In 
fact, eqn. (4) of the two-state model was much more convenient to compare 
with eqn. (15) of the three-state model than eqn. (6). Thus instead of using a 
in eqns. (6) and (7) we looked at eqn. (4) and computed an a” defined by 

G = co 

We also chose to compute a 6 defined by 

(32) 

b = 2303eoaT (33) 

instead of the b defined by eqn. (8). This 6 is more analogous to the original 
parameter of Lachish et al. [3] than eqn. (8). Also in practice we actually 
calculated what the Z and & parameters should be, according to eqns. (32) 
and (33), from the input parameters and compared them with those 
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obtained from fitting the functional form 

exp(-@Jp)l (34) 

to the numerical simulation. In case eqn. (32) is seen as a trivial check on 
the two-state model in actual experiments, it must be remembered that the 
triplet concentration cannot be known directly from optical experiments. 
We are able to use these simple relations because we are simulating experi- 
ments. 

Figure 1 shows the simulated intensity -dependence of anthracene in 
ethanol. The photophysical parameters of anthracene in ethanol that were 
used in the simulation are listed in the caption [ 17, 181. In Fig. 1 instead of 
AOD versus 1, the ratio of the concentration of a given species to that of 
the original ground state concentration co is plotted against Ii,. The fit of 
the triplet curve to eqn. (34) was also plotted, but it was so close to the 
triplet curve that it would not have been discernible in the figure. However, 
even with something that looked to be an excellent fit, the Z parameter was 
18.2% too low and the c parameter was 10.8% too high. The species were 
monitored for Fig. 1 at the end of the 20 ns square pulse so that a close 
correspondence with the two-state model could be made. 

Another simulation was done on the same anthracene system where the 
triplet was monitored at 20 ns after the end of a 20 ns pulse. There was little 
singlet present at this delay. In this simulation additional triplets were 
formed from the singlets left after the pulse was turned off. Again a good fit 
was obtained, but the fitted parameters were still low by 9.8% for Z and high 

fp ( cinslcin /cm’/s 1 

Fig. 1. Numerical simulation of anthracene in ethanol with a 20 ns excitation pulse: curve 
A, rM; curve B, 3M*; curve C, ‘M* The concentrations were sampled at the end of the 
pulse; ks = 1.92 X IO* S-'; his= = l.dO x lo8 s-‘; k,= 330 s-‘; @,. = 0.73; CG = 1.0 x 10-s 
mol 1-l; eG = 4000 1 mol-’ cm-’ ; k,, = 9.2 x lo6 f, (s-l). From these input parameters 
the two-state model should give ii = lo* mol 1-l and b = 6.72 X IO6 cm2 mol-I. The 
parameters obtained from the fit ere ii = 8.18 x 10” mol 1-l and c= 6.06 x lo6 cm2 
mol-l. 
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by 9.2% for 6. Since the two-state model has formally no singlets present, it 
is not clear whether the triplet should be measured at the end of the pulse or 
after the singlet has decayed in order to obtain the best agreement with the 
two-state model. This issue is discussed again below in the case of the 
acridinium ion. 

In the case of anthracene in ethanol, condition (27) was satisfied 
roughly over most of the region from IP = 0 to 1, = 10 einstein cm-* s-l 
because k,, = 9.2 X 1061, and ks .= 1.92 X 10’ s-l. Condition (31) was 
satisfied since kiscrp = 2.8. Also as seen from Fig. 1 some degree of non- 
linearity was present in the curves. From these considerations some agree- 
ment would be expected to be seen with the predictions of the two-state 
model, and indeed there is some agreement. However, it can be noted that 
the fit, which was almost perfect, gave no hint that the answers from the fit 
could be different by over 9% from the parameters of the two-state model. 

To show that the two-state model can really work well when conditions 
(27) and (31) hold, a simulation tias done on the same system but with a 
different pulse width. rP was taken to be 2 pus so that kiscrp = 280. With this 
change a non-linear region in the AOD uersus IP curve could be found for 
IP < 0.15 einstein cm-* s-l. The agreement between the fit to the numerical 
simulation and the predictions of the two-state model agreed to 0.08% for 
5 and 0.2% for 6. With this intensity range eqn. (27) was really well satisfied 
over the whole range, and the two-state model realistically portrays the 
numerical three-state problem. (In the spirit of the analytical models dis- 
cussed above, the triplets were not allowed to decay in this simulation.) 

Figure 2 shows a case that exhibits a more extreme failure of the two- 
state model of excitation than the case of anthracene in ethanol. The simula- 
tion plotted is based on the photophysical parameters of the acridinium ion 
in sulfuric acid [ 17, 191. Since the acridinium ion has a relatively long 
fluorescence lifetime (32 ns) it might be chosen to monitor the triplet state 
somewhat after the pulse but before much triplet decay has taken place. 
Figure 2 is the result of monitoring the various species at 101 ns after a 
20 ns pulse. This type of procedure is equivalent to the experimental 
procedure of extrapolating the triplet decay back to the end of the pulse. 
Again the num_erical solution to the three-state model can be fit very well 
with the Z and b parameters using the functional form in eqn. (34). However, 
if the values obtained from the fit were used to estimate the values of Z and 
6 for the two-state model given by eqn. (32) and eqn. (33) respectively the 
errors would be -47.7% for Z and +84.1% for 6. 

Since so far we have only shown the equivalence of the two-state model 
to the three-state model at the end of the pulse, it might be thought that, the 
large discrepancy between the model prediction and the fit was due to the 
procedure of extrapolating back to the end of the pulse. However, when the 
simulation was repeated with sampling carried out at .the end of the pulse, 
the situation did not improve. In this simulation it turned out that the triplet 
concentration was much less than that of the singlet, and furthermore that 
the AOD versus ?, plot for the triplet was linear. It should be noted that for 
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Fig. 2. Numerical simulation of the acridinium ion in sulfuric acid with a 20 ns excitation 
pulse: curve A, ‘M; curve B, 3M*; curve C, ‘M*. The concentrations were sampled 101 ns 
after the end of the pulse; ks= 3.13 X lo7 s-r; ki, = 1.47 X 10’s_‘; kT= 1.49 x lo3 s-l; 
(PT = 0.47; cG = 1.0 x 10e5 mol 1-l; eG = 4000 1 mol-’ cm-’ ; kex = 9.2 X 10” I,,(s-‘)_ 
From these input parameters the two-state model should give ii = lo@ mol 1-l and b = 
4.33 x 1$6 cm2 mol -I. The parameters obtained from the fit were ii = 5.23 x 10” mol 
1-l and b = 7.96 x lo6 cm2 mol-I. 

both simulations on the acridinium ion ki,,l’, = 0.32 which does not satisfy 
the condition in eqn. (31). 

The same issue arises here as with the case of anthracene as to whether 
the triplet concentration should be monitored at the end of the pulse or 
extrapolated back to the end of the pulse to obtain the closest correspon- 
dence with the two-state model. In order to answer this question, the solu- 
tions to the three-state model must be extended to times after the pulse. 
After the pulse k,, in eqns. (9) - (11) becomes zero and the equations 
decouple. The solutions are now easy even if they are somewhat messy. 
The solution for the triplet concentration with t > rP is 

[3M*] = [3M*](t = I’,) + &[lM*](t = r,)[l - exp{-ks(t -I’,))] (35) 

The concentrations on the right-hand side of eqn. (35) are found by putting 
t = rP in eqns. (14) and (15). The value of the triplet concentration extrap- 
olated back to the end of the pulse in the experimental sense is just the value 
at t + m, since the analytical models considered have no triplet decay. This 
concentration is given by 

L3M*3 (t + OQ) = L3M*](t = r,) + +&M*](t = r,) (36) 

To obtain the two-state model, again the analysis leading up to eqn. (29) is 
employed. It is found that the first term on the right-hand side of eqn. (36) 
is again given by eqn. (29) but that the second terrn on the right-hand side of 
eqn. (36) is zero. Thus in the limit of h,, << ks, the three-state model gives 
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the same result for the triplet concentration at the end of the pulse as for the 
value extrapolated back to the end of the pulse. (See Appendix A for a dif- 
ferent limiting behavior.) Furthermore this value is the two-state value. That 
the values are the same is reasonable, since the two-state model has no singlet 
population anyway. However, the fact that particular simulations give dif- 
ferent values for these two limits is just another symptom that the two-state 
model does not work for the particular parameters of the simulation. 

With respect to the other method concerning the measurement of laser 
intensities [2], not much can be said at this point. This is mainly because, 
as can be seen from the above simulations, the curves are not saturating at 
100% conversion. This general problem will be discussed elsewhere [20]. If 
the fraction q converted cannot be easily obtained, the two-state model 
cannot be used for lack of parameters. If this parameter can be obtained, 
the three-state formula for the intensity is 

z,r, = - k& 141 - 77) 
2303EG{ln(l - 73) + ki,,rp} 

instead of simply 

Z r =_ ln(l--r7) 
P P 2303e&r 

for the two-state model [2]. 

(37) 

(38) 

5. Conclusions 

The simple two-state model for excitation can be derived from a more 
complete three-state model under very restrictive conditions. These are that 
the rate constant for decay of the singlet state is much faster than those for 
all other processes, in particular the excitation rate constant (see eqn. (27)). 
Under these conditions the singlet state can be ignored and treated implicitly 
by only using the quantum yield @r of triplet formation in the two-state 
model. Furthermore, meaningful parameters for the two-state model will 
only be obtained for conditions in eqn. (30) or eqn. (31) which cause the 
relevant AOD uerus Zp plots to be non-linear. 

These conditions which were established by looking at the analytical 
solutions to the three-state model are supported by the numerical simula- 
tions. The numerical simulations also show what happens in intermediate 
regions where the inequalities in eqns. (27) and (31) are not well satisfied. 
The simulations show that if these two inequalities are only “less than” 
the results can still be quite poor. In fact, from the cases considered, it can 
be seen that most of the molecules with lifetimes longer than about 5 ns 
would be very unlikely to give good results when partial saturation is used 
with lasers having pulse widths in the nanosecond time range. We did see that 
anthracene could give excellent agreement with the two-state model when 
excited with a microsecond pulse. This suggests that the appropriate place 
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for the partial saturation method may be with the more intense flashes from 
conventional flash photolysis equipment. However, results from this method 
using nanosecond laser flash photolysis should be viewed with scepticism 
unless it can be shown that the conditions in eqns. (27) and (31) are truly 
well satisfied. 

Finally it was seen that saturation phenomena can be quite deceptive. 
Figure 2 shows what appears to be an approach to saturation according to 
the two-state model. However, if the technique of extrapolating back to the 
end of the pulse is not used, then no approach to saturation can be seen at 
all. The most deceptive feature of the partial saturation technique is that 
so many of the AOD uersus Ip simulations showed excellent fits to the func- 
tional form of eqn. (34). The only exceptions that we found were the linear 
plots, which can be easily excluded from consideration on other grounds. 
However, just because the functional form appears to be that of the two- 
state model, other checks, especially those in eqns. (27) and (31), must be 
made before the results can be certified. 
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Appendix A 

The expansions in the text are heuristic derivations of the two-state 
model from the three-state model. The reason these derivations were used is 
that mathematically it is not possible to carry out an expansion in a param- 
eter such as k,, and hope to see something similar to an exponential depen- 
dence on that expansion parameter unless the expansion in k,, is taken to an 
infinite order. 

However, an expansion of the triplet concentrations in terms of k,, is 
useful to put the conclusions on a more rigorous basis. After much tedious 
calculus, the following expansions for the triplet concentration can be 
reached. At t + 00 

l%*1v+ Qo) ~ r @ k (rp@TkexY 
P T ex- + kex2(iPT2 - a+) x 

CG 2 

p + exp(--W,) r 
X 

kS kS2 I 
(AlI 

which comes from expanding eqn. (36). At the end of the pulse 

W*l(r = L) = r cp 
P 

k 
T ex 

+ kX% exp(-W,) + O,(k 

ks 
ex 

2) 
WI 

CG 

which comes from expanding eqn. (21). A similar expansion of the two-state 
model to second order in h,, gives 

13M*1 ___ = rpa'Tkex- (rp*iTkex)2 
CG 2 

(A3) 

These rigorous expansions amplify two points in the text. First, al- 
though the heuristic derivations in the text gave the two-state model from 
both the three-state model at the end of the pulse and at t + 00, the expan- 
sions in eqns. (Al) and (A2) give different results even to first order in kex. 
However, under the condition 

ksrp s 1 

these tyo expansions give the same result to first order in k,, . 

(A4) 

Second, the expansions show the same type of requirements on the 
two-state model with regard to the pulse width and photophysical param- 
eters as did the heuristic derivation. To lowest order in k,,, the expansion 
at t + 00 in eqn. (Al) for the three-state model gives the same result as the 
lowest-order term in the expansion of the two-state model (see eqn. (A3)). 
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This means that the two-state model will be fine as long as the excitation 
rate constant is small, and this was expressed in the form of the condition 
in eqn. (27) in the text. However, it can be seen that the expressions in eqns. 
(Al) and (A3) do not agree to higher order in k,,. In fact they disagree in 
the lowest-order term that is non-linear in k,,, which will probably be the 
term determining the onset of partial saturation behavior. The kex2 terms in 
eqns. (Al) and (A3) will agree if the condition in eqn. (A4) holds because 
then the term proportional to rP2 in eqn. (Al) will always dominate the 
l?,/k, and l/ks 2 terms in eqn. {Al). Condition (A4) is analogous to the 
condition in eqn. (31) in the text. Hence even with the rigorous expansions 
it can be seen that, in order for the two-state model to describe partial 
saturation behavior, the excitation rate constant must be small in some sense 
as in condition eqn. (27) and, in addition, there must be some restriction on 
the pulse width which is set by the photophysical parameters of the mole- 
cule being measured, such as the conditions in eqns. (31) or (A4). 


